

HOK YAU CLUB HONG KONG MOCK EXAMINATION 2020/21

MATHEMATICS Compulsory Part PAPER 2

12:00 nn - 1:15 pm (11/4 hours)

INSTRUCTIONS

- Read carefully the instructions on the Answer Sheet. After the announcement of the start of the
 examination, you should first stick a barcode label and insert the information required in the spaces
 provided. No extra time will be given for sticking on the barcode label after the 'Time is up'
 announcement.
- When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. ANSWER ALL QUESTIONS. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
- 6. No marks will be deducted for wrong answers.

©學友社 保留版權 Hok Yau Club All Rights Reserved 2020

Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$\frac{(6x^{-5})^{-2}}{4x} =$$

A.
$$3x^9$$
.

B.
$$\frac{x^9}{144}$$
.

C.
$$\frac{3}{r^8}$$

D.
$$\frac{1}{144x^8}$$
.

2. If
$$\frac{3a+b}{3a} = 2 - \frac{b}{a}$$
, then $b =$

A.
$$\frac{2a}{3}$$
.

B.
$$\frac{3a}{2}$$
.

C.
$$\frac{3a}{4}$$

D.
$$\frac{4a}{3}$$
.

$$3. \qquad \frac{1}{5+3x} - \frac{1}{5-3x} =$$

A.
$$\frac{10}{25-9x^2}$$
.

B.
$$\frac{10}{9x^2-25}$$
.

C.
$$\frac{6x}{25-9x^2}$$
.

D.
$$\frac{6x}{9x^2 - 25}$$
.

- 4. $m^2 2m 9n^2 + 6n =$
 - A. (m-3n)(m-3n+2).
 - B. (m-3n)(m+3n-2).
 - C. (m+3n)(m-3n+2).
 - D. (m+3n)(m-3n-2).
- 5. Let k be a constant. If $f(x) = 3x^2 + x + 2k$, then f(k+1) f(k-1) =
 - A. 6k + 2.
 - B. 6k+6.
 - C. 12k + 2.
 - D. 12k+6.
- 6. Let $g(x) = x^2 + ax + b$, where a, b are constants. If g(x) = g(-x) and the remainder is -3 when g(x) is divided by x+1, then when g(x) is divided by x+2, the remainder is
 - A. 0.
 - B. 1.
 - C. 2.
 - D. 4.
- 7. If a and b are constants such that $x^2 + (a+b)x = (x+2)(x-3) + b$, then a =
 - A. -7 .
 - B. -5.
 - C. 5.
 - D. 6.

8. The figure shows the graph of $y = -(px+3)^2 + q$, where p and q are constants. Which of the following is true?

B.
$$p < 0$$
 and $q > 0$

C.
$$p > 0$$
 and $q < 0$

D.
$$p > 0$$
 and $q > 0$

9. The marked price of a piece of clothing is \$160. If it is sold at a discount of 15%, the percentage profit is 8.8%. If it is sold without any discount, find the percentage profit.

10. The scale of a map is 1:25000 . If the area of a park on the map is $4\,\mathrm{cm}^2$, then the actual area of the park is

A.
$$1 \times 10^5 \text{ m}^2$$
.

B.
$$2.5 \times 10^5 \text{ m}^2$$
.

C.
$$4 \times 10^5 \text{ m}^2$$
.

11. It is given that t varies directly as p and inversely as the square root of q. When p is decreased by 35% and q is increased by 69%, then t is decreased by

- 12. The solution of the inequality -5 < 3 2x < x + 6 is
 - A. x > 4.
 - B. -4 < x < -1.
 - C. -1 < x < 4.
 - D. x < -1 or x > 4.
- 13. Let a_n be the *n*th term of a sequence. If $a_3 = 11$, $a_6 = 85$ and $a_{n+2} = 2a_n + a_{n+1}$ for any positive integer *n*, then $a_1 =$
 - A. 3.
 - B. 5.
 - C. 21 .
 - D. 43 .
- 14. In the figure, ABCDEF is a hexagon, where all the measurements are correct to the nearest cm. Let $y \text{ cm}^2$ be the actual area of the hexagon. Find the range of values of y.

B.
$$42 \le y < 63$$

C.
$$42 \le y < 65.25$$

D. $43.75 \le y < 60.75$

- 15. The radius of a sector is increased by 25% and its angle at the centre is decreased by k%. If the area of the sector remains unchanged, find the value of k.
 - A. 20 %
 - B. 25 %
 - C. 36 %
 - D. 50 %

- 16. The base of a solid right pyramid is a rectangle, the length is 32 cm and the width is 10 cm. If the height of the pyramid is 12 cm, then the total surface area of the pyramid is
 - A. $616 \, \text{cm}^2$.
 - B. $720 \, \text{cm}^2$.
 - C. 824 cm^2 .
 - D. 936 cm².
- 17. In the figure, ABCD is a trapezium, where AB//DC. E is a point lying on DC such that AE//BC. It is given that AB:DC=2:9 and the area of the quadrilateral BCEF is 32 cm^2 . Find the area of the trapezium ABCD.
 - A. 81 cm²
 - B. 85 cm²
 - C. 99 cm²
 - D. 128 cm²

- 18. In the figure, B and C are points lying on AD such that AB = BC = 2CD. E is a point lying on AF such that BE / / CF. DE and CF intersect at the point G. The ratio of the area of the trapezium BCGE to the area of ΔEGF is
 - A. 4:5.
 - B. 5:4.
 - C. 5:8.
 - D. 8:5.

19. According to the figure, which of the following must be true?

I.
$$a-b+c=180^{\circ}$$

II.
$$a+b-c=180^{\circ}$$

III.
$$a+b+c=270^{\circ}$$

- A. I only
- B. II only
- C. I and III only
- D. II and III only

20. In the figure, ABCD is a square and BEC is an isosceles triangle with BC = BE. The straight lines AE and BD intersect at the point F. If $\angle BEC = 56^{\circ}$, then $\angle AFD =$

C. 59°.

D. 62°.

21. In the figure, ABCD is a quadrilateral, where $\angle BAD = 90^{\circ}$. It is given that AB = 9 cm, BC = 8 cm, CD = 17 cm and AD = 12 cm. Find $\angle ADC$ correct to the nearest degree.

D. 69°.

22. In the figure, ABCDE is a circle. If $\angle ABC = 90^{\circ}$, $\angle CED = 36^{\circ}$ and CD = 6 cm, find the area of the circle correct to the nearest cm^2 .

B. 54

C. 82

D. 113

23. In the figure, ABCD is a rectangle. E is a point lying on BC. Find $\frac{EC}{AC}$.

A. $\cos \alpha \tan \beta$

C. $\frac{\tan \beta}{\cos \alpha}$

D. $\frac{1}{\cos \alpha \tan \beta}$

24. The polar coordinates of the points P, Q and R are $(5,110^{\circ})$, $(3,290^{\circ})$ and $(6,350^{\circ})$ respectively. The area of ΔPQR is

A. 12 .

B. 24 .

C. $12\sqrt{3}$.

D. $24\sqrt{3}$.

25. In the figure, the equations of the straight lines L_1 and L_2 are $x = \frac{1}{a}$ and $\frac{x}{b} + \frac{y}{c} = 1$ respectively. Which of the following are true?

II.
$$c < 0$$

III.
$$0 < ab < 1$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- 26. The coordinates of the points A and B are (-1,2) and (3,5) respectively. If P is a moving point in the rectangular coordinate plane such that the area of ΔPAB is equal to 20, then the locus of P is
 - A. a straight line.
 - B. a pair of parallel lines.
 - C. a circle.
 - D. a square.
- 27. In the figure, the equation of the circle is $x^2 + y^2 2hx 2ky + h^2 + k^2 r^2 = 0$, where h, k and r are constants with r > 0. Which of the following must be true?

I.
$$r+h<0$$

II.
$$r+k>0$$

III.
$$h-k>0$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- 28. Two balls are randomly drawn at the same time from five balls numbered 2, 3, 5, 6 and 9. Find the probability that the product of the two numbers drawn is an even number.
 - A. $\frac{1}{2}$
 - B. $\frac{3}{5}$
 - C. $\frac{4}{5}$
 - D. $\frac{7}{10}$
- 29. Which of the following can be obtained from any cumulative frequency curve?
 - I. Median
 - II. Mean
 - III. Range
 - A. I only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 30. Consider the following positive integers:
 - 4 4 4 4 5 5 6 6 6 7 8 9 k

where $4 \le k \le 9$. If the mean, the median and the mode of the data are α , β and γ respectively, which of the following must be true?

- A. $\alpha > \beta$
- B. $\alpha > \gamma$
- C. $\beta > \gamma$
- D. The inter-quartile range of the data < 4

Section B

31.
$$8^{17} + 8^4 - 8^3 =$$

- A. 2000000000E00₁₆ .
- B. 200000001200₁₆ .
- C. 800000000E00₁₆.
- D. 800000001200₁₆ .
- 32. Let f(x) be a quadratic function. Which of the following may represent the graph of y = f(x) and
 - A. the graph of y = -f(-x).
 - B. the graph of y = f(x-8).
 - C. the graph of y = f(-x+8).
 - D. the graph of y = -f(x-4).

- 33. Let a be a constant and a > 1. If the roots of the equation $(\log_a x)^2 + 4\log_a x^2 18 = \log_a x$ are m and n, then mn = 1
 - A. a^3 .
 - B. a^7 .
 - C. $\frac{1}{a^3}$.
 - D. $\frac{1}{a^{7}}$.

34. The figure shows the graph of $y = a^x$ and the graph of $y = b^x$ on the same rectangular coordinate system, where a and b are positive constants. If a horizontal line cuts the graph of $y = a^x$, the graph of $y = b^x$ and the y-axis at the points A, B and C respectively, which of the following must be true?

II.
$$b > a$$

III.
$$\frac{AB}{BC} = \log_a \frac{b}{a}$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

35. If a > 0, which of the following are arithmetic sequences?

I.
$$a\sqrt{a}$$
 , $3a\sqrt{a}$, $5a\sqrt{a}$

II.
$$(\sqrt{a})^5$$
, $(\sqrt{a})^{10}$, $(\sqrt{a})^{15}$

III.
$$\log \frac{1}{\sqrt{a}}$$
 , $3\log \sqrt{a}$, $7\log \sqrt{a}$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 36. If k is a real number, then the real part of $(k-2i)(2+ki)^2$ is

A.
$$-k^3 + 12k$$
.

B.
$$k^3 - 12k$$
.

C.
$$k^3 + 4k$$
.

D.
$$k^3 + 12k$$
.

37. Consider the following system of inequalities:

$$\begin{cases} 0 \le x \le 30 \\ x + 2y \ge 10 \\ x + 3y \le 54 \end{cases}$$

Let R be the region which represents the solution of the above system of inequalities . If (x, y) is a point lying on R, then the greatest value of 2x-3y+2 is

- A. -52 .
- B. 38.
- C. 92 .
- D. 110 .
- 38. In the figure, ABCDEFGH is a cuboid, where AF = 2a cm, FG = 2b cm and GH = 2c cm. Let AC and DB intersect at the point X. Denote the angle between FX and the plane ADEF by θ , then $\cos \theta =$

$$B. \qquad \frac{b}{\sqrt{4a^2 + b^2 + c^2}} \quad .$$

C.
$$\frac{\sqrt{b^2 + c^2}}{\sqrt{4a^2 + b^2 + c^2}} .$$

D.
$$\frac{\sqrt{4a^2 + c^2}}{\sqrt{4a^2 + b^2 + c^2}}$$

- 39. In the figure, ABC and CDE are circles such that BEC is a straight line. PQ is the common tangent to the two circles at C. BA is the tangent to the circle CDE at D and BA produced intersects PQ at F. If $\angle BDE = 35^{\circ}$ and $\angle BCQ = 65^{\circ}$, then $\angle BFC = 10^{\circ}$
 - A. 20°.
 - B. 25°.
 - C. 30°.
 - D. 45°.

- 40. Find the range of values of k such that the circle $x^2 + y^2 + 2x 2y 2 = 0$ and the straight line 4x + 3y + k = 0 do not intersect with each other.
 - A. -11 < k < 9
 - B. -9 < k < 11
 - C. k < -11 or k > 9
 - D. k < -9 or k > 11
- 41. The equations of the three sides of a triangle are 4x+3y=24, 4x-3y=-24 and y=b, where b is a constant. If the y coordinate of the centroid of the triangle is -10, then b=
 - A. -10 .
 - B. -19 .
 - C. -28 .
 - D. -46 .
- 42. 5 boys and 4 girls are arranged in a row for chorus . If only two girls stand next to each other, then how many permutations are there ?
 - A. 28800
 - B. 172800
 - C. 241920
 - D. 259200

- 43. A game host puts 2 balls randomly into 3 boxes (each box may contain 0 balls, 1 ball or 2 balls). Participants in the game can choose any 2 boxes to open. If 2 balls are drawn, they can get a prize. Find the probability that the participants can get a prize.
 - A. $\frac{1}{3}$
 - B. $\frac{2}{3}$
 - C. $\frac{4}{9}$
 - D. $\frac{5}{9}$
- 44. In an examination, the difference of the test scores of two students is 18 marks. It is given that the standard deviation of the test scores in the test is 6 marks, find the difference of the standard scores of the two students.
 - A. 3
 - B. 6
 - C. 12
 - D. 24
- 45. It is given that $\{a_1, a_2, a_3, \dots, a_{10}\}$ is an arithmetic sequence, where the standard deviation of $\{a_1, a_2, a_3, a_4, a_5\}$ is 2. Find the variance of $\{2a_6+5, 2a_7+5, 2a_8+5, 2a_9+5, 2a_{10}+5\}$.
 - A. 4
 - B. 8
 - C. 13
 - D. 16

END OF PAPER